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For  water-modefated  reactors  with  .significant  neutron  production at 
epithermal  energies,  a modLfied"&up method uas fatmuhte-d which con- 
siders  the d e t a i l s  of the .@roceases in the epmd region (ref. 6) .  

'phe validity of reactor  criticality  calculatione by groug mew 
is best  tested by apEly3ng these methods to a eet of controlled  criti? 
~ a l  "ts . m e  o a l ~  A t a g e  critical mass etudles (refs. 7 and 8 )  
provide , a n  excellent.  set of experbnerrts to &e& diffusion-theory groq  
analysis as itapplies to  hydrogen-moderated  reactors.  These experi- 
ments ' a r e  ideal for analysis, a0 they consist of homogeneous solutione 
of uranyl fluoride in water enclosed by thin aluminum or sta idem-stee l  
cy3.indrical.c-a with and without water reflectors. 'phe uranium . 
is .enriched to contain 93.4 &cent urani~m-235. EI= modified group 
method of reference '6' I s  amlied herein  to all the baFe and water- 
reflected  critical -ts reported in.refqnce 7., with the excep- 
tion of the cadmium-cuvered water-reflected caees. In addition, the re- 
s u l t s  of an extended progmm of critical.  experiments in cylindrical Be- 
-try reported in reference 8 are included in the presen.t"sis. - 
group forwrlatlon qloyed makes m e  of the pecuUezly rapid elowing- 
down properties of hydrogen and includes  the  effects of epithezmal ab- 
sorption and flssion. Iche concept. of reflector savings, calculated by 
two-grorzp analysis, is employed in eyaleting the criticality of the 
reflected ex~?mim~&8l assenibliea . 

Since the experirraents of reference 7 -re reported,  these data have 
been widely analyzed. Schuake and Morfltt (refs. 9 and 10) in meking 
safe handling procedures spxeeded in fi3- the experimental data to 
empirid curves. ~acklin (ref. LL) later inproved the reh- 
tions in order. to  extend  the. data beyond the experimental range. Clark 
(ref. 12) applied .a- one-graup neutron  diffusion-m-&l. to tpe -hen- 
tal . d a t a  in order to establish a basis for estimating  the  nuclear  eafety 
of  .sepexation-process equlpent . , 

- . 
V a r i o u s .  investigators, led by G r e u l i n g  (ref%. 13 and 14), have at- 

tempted to obtain a c c m p d ~ ~ ~ i v e  yet simple theary of the hydrogen- 
moderated  reactor. -MUS, B ~ U ,  Bendt, and (2%f6. 15, U, 17, 
and 18, reepectively) have &mJyzed the "ntal data with such an 
object In mind. With individually varying methods, a l l  haxe obtained 

* 
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' reasonable results. llre present report at-ts to determine how the 
b modified group method of criticality analy-sis, eqloyed i n  HACA am- 

lytical  reactor  studies,  predicts the reactivfty of the water reactors 
of references 7 asd 8. 
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energy per collison. This three-anergy-region  picture leade t o  the fol- 
lowing cr i t ica l i ty  equation (see appendix A for definition of syubole) : # 

The flrst  term represents the contribution to the neutron gener- 
ation du= to fissions by thermalized mutrom, wherein the quantlty 
l/(l+ Lp2) is the probability of a neutran escaping. leakage in slow- 

~ n g  ao~n to - energies in a of buckling constant- ~ 2 ;  pth 
is the f'r&ctFon of fission rmrtcom absorbed +.hat escape capture in 
slowing drnm t o  thermal energies; 11 1 3. G B  ie the probability of 

a neutron emaping leakage during thenml diffusion; and IC, is the 
thermal multiplication  constant. 

""1 

Evaluation of t h i s  integral tern permite a detailed deterzrdnation 
of-the dlspoaition .of neutrone by leakage, absorption, and slowing with- 
in  the epithennal region. Elmever, it is possible and desirable t0 re- 
place the integral-tqm by a m e  conyenient tenn i m l v l n g  quaatitlea W 

averaged over the epithermal region. .'!Be a- values are obtafmd 
by weighting local va lues  by the neutron f lux~s in thie epithennal re- 
gion. The wiatbn of neutron flux with e-gy fs evaluated an the * 
basis of an appropriate neu*o-n s l ~ - d . o w n  model in  an in f in i te  me- 

model has been used, &.me, far the reaqtors ;Indp-F 'coneiderathi,  m" 
Important non- contributlona o c c u r z t ~ t h e  epithermal region 

dium of the Bame CmIpOsition. In ?he pres&t-.&ing.yjis:tb a@"-ory .- 



c age theory. It has been shown i n  reference 2 that - 9; ~lls;y be corre- 

lated wlth the value of % for a given m e  camposition, fnasmuch ae 
uranium Fs the only absorber whose cross section does not vary Inversely 
with neutron -city. TIE correaticm of % and for E 

range of rmtw core cqos i t lom I s  given in reference 2 and is used 
herein. 

. _  
~ - .  . . .  . " - _  
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The results of the criticality  cslculatione for the bare and water- 
reflected  cyllndrlcal-reactor experiment6 o f  refwnces 7 and- 8 are pre- 
sented in  figures I and 2, respectlkly. 'pbe evec t ive  multiplication 
constant X&y as calculated fram eqyatlon (2) is plotted @net the 
E/U-235 at" ratio R. A distinct& i s  made between t4e .d-- and 
steel-encloeed reactdi of .var ious diameters. In refererice8 7 and 8 ,  
f o r  reactors of a given diameter, the core hewt was varied to  obtain 
crit lcall ty f o r  solutions of difTerent uranium concentration cmseepond- 
1% t o  the ordinate R.. The material parsmeters used in cceqeutlng val- 
ues of Gff for all-values of R . q?e giv& i n  $able I. 
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The results f o r  the water-reflected reactors are shown in figure 2. 
There is apparently a mch greater scatter thctn for the bare reactors; 
however, tu0 important things axe noted: _- . 

(1)  he almtnum- and steel-contsinar  points are separated 
0.02 t o  0.03 in AK. Within each group of points. the s c a t t e r  is abmt 

contained assemblies and abaut an a- value of of I .OW far 
the steel-contained  assemblies. . 

"01 about an 8- value of Keff of 0.98 for WnUm- 
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uncertainty in  the critical height measurament may introduce a variation 
i n  of 0.7 percent f o r  the flatter reactors, whereas the m e r -  
taintg in uranium concentration mag introduce a variation in It&' of 
0.6 percent for the leaner reactors. The eqerlmen@l errors may there- 
fare accoullt .for much of the scatter i n  the data. 

these cmdiguratians, two barn @r@ two reflected. . . I n  the following 
table Mill I 6 redt6 are canqpared with those  obtained in this report: 

Diameter, %ff Atom Critical Reflector C o n t a i n e r  might,. 
m .  mass, thickness, mtefial an 

IQ U-235 R 
ratio' Present R e f .  15 cm 

rep& 
25.4 

.978 1.007 329 .893 19.78 Al 22.4.  25.4 . 

.972 1.008 999 1.31 u.43 Al 44.3 38.L 

.967 - -981 43.9 8.8 0 S t e e l  . 32.3 25.4 
0.979 1.005 52.9 7.9  0 Al 34.0 

Both methods are i n  relst ive agreement in predict.?ng the reactivity of . _  

for the r i che r  'of the two lare reactare. F a  the two reflected cases, 
Mills estimates reactivity 8 8  about 1 perch supercritical, a d  the 
present report estimates these as abaut 2 p m e n t  subcrfitical. Howaver, 
the indications a m  that use of two-grow reflectar savings, which m e  
calculated far reactors of spherical gemtry and an l i ed  herein t o  the 
eqe r imen td  aseemblies, is satis-ctory. The following discussion 
will indicate that the consistently  subcritical  predicted reactivFtFes 
for bare assemblies may be explained by considerations of the extrapo- 
lat ion length. 

the bRre reactors, d both s h o w  the 88me trend in unanrr?st-ti= &ff 

. . .  . .  

The extrapolation length 6, whose calculation is described in  ap- . 
pendix B, is an .ing2ort;ant quantity used in cmuputing the gecnnetric buck- 
ling for bare reactors. The QuEtntity 6 was 8xbitrarU.y  cmputed *am 
the transpOrt mean free path eduated from w s s '  secti.2~14 at  a neutron 
energy of about 1 Mev. 'phis assumed that 1 Mew was representative of 
the energy of the leakage neutrop~. It is qyLte.poss1bl.e that a acnae- 
what higher enera shuld be used with cmreeponding d e r  cross sec- 
tions, leading to a s l i g h t l y  bger extrapolation length. 

In order t o  determine. the effect on the predicted  reactivity of a 
change fn the extrapolation length 6, the criti-ty of all the bare 
reactars was recmputed with values of 6 increased by 10 percent over 

. " 

c 
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those used 'for figure 1 (these appear in table I) . Tfie results of these 
calculations are shown in figure 3. Caparison of figures 1 and 3 indi- 
cate~ that  arbitrarily increaeing the extrapolation afstaace serves to 
shift the  data in a more or  less unifarm way, maldng the reactivity pre- 
actions closer to ~ t y .  m t t e r  reactors ( ~ g e r  ~ t e r s )  as a 
group  are  more  sensitive to changes in 6. Since they are flat, the 
axial bucklin is sensitive to changes in the  extrapolation L e n g t h . ,  It 
is appaxent that no one value of 6 can serve for all the data points. 

Clark (ref. 12) has used the Oak Ridge  critical mas8 study data to 

to 3.5. centimeters, a e e e  with the values  used herefn. l3e indications 
are that the choice of 1Mev as a  neutron energy to eelect cros~ Bec- 
tbns for estimating values of 6 fe eatisfactory for hydrogen- 
moderated  critical  asseniblles. 

r2 
PrJ calcnlate ex"8p.olation  distances; and his. results,  which vary fram 3.0 

0 

A modified poxq methoa of criticality analysis, emplayed i n  m i -  
ou8 NAW 8nalyt;ical reactor  studies, was applied to the experimental 
configurcttions vhich are p&Ft of the OEhk R i d g e  crltical mas8 studies. 
The calculated  reactivities of theee uranyl-fluoride - water critical 
assemblies were reasonably good far a l l  the reflected and most of the 
bare  cores over the errtire range of uranium concentration and core ge- 
ometry covered by the Oak Ridge -nts. The effects of almulnum 
and steel  containers on the reactivfty of water-reflected assePibUes 
were Indicated. 

Lewis Flight  propulsion  Laboratory 
l&tional Advtsory Ccmdttee for Aeronautics. 

Cl-, m o ,  Decder 31, 1955 
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Subscripts : 

A 

C 

F 

f 
cu 
0 
10 

~ 

M i 

r 

s 

1 

z- TR 

B th 
NU 

Q 

absorption 

care 

fission 

fast-neqtron p u p  

intermediate neutron @mtq 

reflector 

scattering 

t o t a l  

transport 

therIuElne!utrangrorq! - 

. " 

. .  
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In the  critfcality  equation ueed to  calculate geff (eq. (2 1 1, the 
requlrea pammeters fall Into the following categorlea: 

The thd paremetera are calculated Froan the* definitions a8 
f o l l m :  
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I =  0.33 4.5 
0 

3 .o 3 -94 0 F 

7 .O 10.0. 687 u-235 
3.5 4 .la 0 

580 (UP 0.025) 



If it is esemed that hydrogen is the only scatterer and that other ab- 
sorbers obey - l/v uw in the epitherd. region, a s i m p ~ ~ - r e ~ t i o n s ~ p  
derived in  reference 2 may be wed ham: 

c 

c 
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Figure 6 was used to proulde values of p.t;h for a l l  solutions 

. 

“terS 

 he %at-neutron s ~ n g - h w n  length $ wae caoaguted ~ i t h  +he 

nyl fluoride of different concentnstlons. m e  results were averaged 
method of Marshals (ref. 22, eq. (A-3)) for water and solutions of ulg- 

over the U-235 fission spectrum  (ref. 23). Be- the UO& used’* 
the criticality eqeriments was only 93.4  percent enriched i n  U-235, 
Consideration waa given to the’ scattering prop&rtiee of the fluoride 
asaoclated with U-234 and U-238. The results of t h i s  calculation gave 
L:=25.36 square  centimsters for p water. This calculated value forr 

to thermal energies of 31.8 square  centimefxrs (ref. 24 1. The values 
for the fluaria solutione were s l d h r l y  a4justed by the 68me ratio. A 
CUrVe’ Of aajuStd Of L2f wiIl6.t 1/R I S  preSeZl”d in fiecure 6. 

Also included in figure 6. 1s a, curve o f ’  Ti Ebna (L; - 
quired for all fluoride solutions were read from the curye. 

pure water was adjusted. to the-“ vrtlue of slowing-tloun Length 

- 
Ti). values re- 



whererand 
meters, d 6 
or a reflector 

Since the 

. .  . . . .  
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thin reflectors, the mvings can be apprcudmstd by use of the foU- 
&tion (ref. 2): 

Lo 5.85 6 .lB 6.55 7-20 
30 6.25 

, 6.60 7.00 7.75 

The family of curyes of reflect= savings ae;alnst reflect- thick- 
ness is given in figure 7. . 

_. . 

All the reflected  reactors of reference 7 had a 6-fnch reflectar on 
top and a &inch reflector cm bottapn. The reactors of reference 8 had 

6 inches of water. According t o  two-group themy, the saturated reflec- 
tor savings for water reflectors on lean water-moderated cores should be 
appro-tew (see ref. 2) 

2 

6 =I 4-i = -131.8 -t 7.66 = 6.28 cm 

which is in exlcellent -anent with the value obtained for R - 999 at 
t er 30 centimeters. The value of 6 for reflected reactors obtained ‘by 
Clark (ref.  12) I s  around 6 centimeters, which is in good agmenent with 



. I  
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The authors of reference 7 break down the experFmsntal - into 
cu .two types ; a &&millimeter error i n  messuring the critical height, and 
8 
M 

a &-percent error in es tbpt ing  the uranium concentration. An errocp 
i n  measuring the critical height would be more important for the flat- 
ter cares; emor in uranium concentration WOuLa be more 3mporknt 
for the leaner, 'less concentxated cores.  
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w m  I. - MATkRIAL PARAmTERB 
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Figure 1. -.EPfective  multiplication  factor f o r  bare 
uranyl-flouride - water cylindrical critical aesemblies 
of references 7 and 8. ' 
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Figure  2. - Effective  multiplication .factor for. reflected uranyl-flouride - 
wetter c y l i ~ r i c & l   c r i t i c a l  assemblies of reference6 7 and 8 .  
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Figure 3. - Effect of  IO-percent increase of ex t rqola t ion  
distance on effective  multiplication  factor  for  bare uranyl- 
f louride - water cy l indr ica l   c r i t i ca l  assemblies of references 
7 and 8. 
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Figure 4 .  - U r a n i u m  atomic concentration m. function of hydrogen atomic concentration 
for varloue uranyl-flouride - water eolutions at rwm temperature, calculated from 
experimental data of reference 7. 

.. . 
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Figure 5. - Noacapture probabiltty  for  uranyl-flouride - water solutione 
at room temperature. . 
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Figure 6. - Mean-square slowing-down distance fpr uranyl-flourT.de - water 
solutions at room temperature. 
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Figure 7. - Reflector savlngs due t o  water reflector for  uranyl-flouride - water Bolutlone at room 
temperature,  calculated by two-gxoup theory. 
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